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FOURIER TRANSFORM RECONSTRUCTION FROM INEXACT DATA

INTRODUCTION

The central problem in spectral estimation, the reconstruction of a Fourier transform from
sampled data, is, to paraphrase Parzen [1], essentially the problem of how best to approximate a
function from N of its Fourier coefficients. Emphasis on the approximation-theoretic aspect of the
problem focuses attention on the algebraic form of the estimating functions and on the error crite-
rion by which the approximation is judged. In [2] Fourier transform reconstructions were ob-
tained from noise-free data samples by using best linear approximations in suitably chosen Hilbert
spaces. These reconstructions included, as special cases, the estimates obtained by the bandlimited
extrapolation procedures of Cadzow [3], Papoulis [4], Kolba and Parks [5], and others. The same
approach was used in [6] to derive algorithms for tomographic reconstruction. In this report we
consider the problem of Fourier transform estimation from data corrupted by additive noise and
we analyze the reconstructions obtained in [2] as statistical estimators.

We begin with a summary of the techniques developed in [2] for the noise-free case. These
methods are then extended to the case of noisy data, and bias and variance formulae are obtained.
The special case of sinusoids in noise is considered, and the amplitude estimates obtained for this
case are shown to be superior to the best linear unbiased estimates.

The general problem to be considered here is the reconstruction of

F(w) =f f(t) eiwt dt, (1)

given the values at t = t1 , ..., tN of

x(t) = f(t) + n(t) . (2)

Specific assumptions about n(t), the unwanted or noise component, will be made as needed. By the
noise-free case we will mean x(t) = f(t).

APPROXIMATING A FOURIER TRANSFORM FROM NOISELESS DATA

The problem of estimating F(w), given f(t1 ), ..., f(tN), is often referred to as the quadrature
problem; one must, in effect, perform the integration in Eq. (1) in some sense. Unless more than
just the numerical data are known about F(w) (or equivalently, about f(t)), any function F(w) such
that
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is a possible solution. The main idea of [2] is that one must use whatever prior knowledge one has
to eliminate solutions as unsuitable and to select a single F(w) that stands the best chance, as far
as one's prior information is concerned, of being the true F(w). An effective way of doing this is
by the use of weighted L2 -spaces and best linear approximation.

Let FO(w) be a prior estimate of F(w) and let P(w) > 0 be a weighting function. We take as
the estimate of F(w) that function F(w) that minimizes the weighted error

00J [IF, (W)- (W) 12 p(W)] dw, (4)

subject to the data constraints of Eq. (3). The solution is easily shown to be

N
F(w) = FO (w) + P(w) E: zm eiw tm (5)

m=1

where the coefficients z1 , ..., ZN are determined by Eq. (3). In addition to being closest to FO in the
sense of Eq. (4), this estimate, F(w), is the best estimate of F(w) having the algebraic form of
Eq. (5) in the sense that the error

00 ~~~N
[IF(W)- l FOF(w) +P(w) E ameiwtm 12/P(w)] dw, (6)

m=1

is a minimum when am = Zm, m = 1, ..., N. Although the use of a nonzero FO (w) provides added
flexibility when such a prior estimate is available, we will take F.(w) = 0 in what follows. The esti-
mator, Eq. (5) with FO(w) = 0, was considered in [2], where it was referred to as the PDFT
estimator.

If the data are evenly spaced d units apart and P(w) = 1 for Iw I<r/d,P(w) = 0 otherwise, then
Eq. (5) reduces to the DFT of the data. If we should happen to know that F(w) = 0 for I w I > a,
where 0 < a < rr/d, and we take P(w) = 1, I w I < a, P(w) = 0 otherwise, we obtain the estimate

N

F (w) = m=1 m7
(o , ~Iwi~a'

where Z1 , Z2 , *--, ZN are determined by Eq. (3). As was shown in [7] this estimate is the closed-form
equivalent of those obtained through extrapolation algorithms in [3], [4], [5] and elsewhere. The
estimator in Eq. (7) is quite unstable, based as it is on the assumption that the data correspond to a
signal that is precisely a-band-limited. It was in an attempt to reduce the sensitivity exhibited by
F.(w to out-of-band components that we were led to consider the estimators in Eq. (5). We found
that by taking P(w) = 1 for I w I < a, and P(w) = e > 0 for a < I w I < 7r/d, where e is a small positive
number, the resulting PDFT estimator provided a marked improvement over F0(w). In effect, we
make P(w) share with the true F(w) broad features, such as we know them a priori. Relative energy
concentrations and known component distributions such as radar clutter, noise, and even delta func-
tions, can be incorporated in P(w). As we begin to distinguish components from one another and to
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take them into account in P(w), we pass into what may properly be called the noisy case and this
is the subject of the next section.

STATISTICAL ESTIMATION OF FOURIER TRANSFORMS

Suppose now that x(t) = f(t) + n(t) and that x(t1 ), ..., x(tN) are given. We shall obtain a PDFT
estimate of X(w), the Fourier transform of x(t), and then use it to derive an estimate of F(w). We
select weighting functions, Pf(w) > 0 and Pn (w) > 0 (which correspond to f(t) and n(t) respec-
tively), take P(w) = Pf(w) + Pn (w), and obtain

N
X(w) =P(w) E zmeiwtm , (8)

m=1

as the estimate for X(w). As a reasonable choice for the estimate of F(w) we choose

F(W) = [Pf (w)P(w)] (w),

or
N

F() =Pf(w) A zmeiWtm, (9)
m=1

where the z 1 , *--, ZN are chosen to make Eq. (8) consistent with the data. In the special case in
which Pf (w)Pn(w) = 0 (disjoint spectra), it is clear that X(w) estimates both F(w) and N(w), the
Fourier transform of n(t). An example of this case was considered in [2] where Doppler radar
samples were analyzed to detect targets known to be outside the clutter spectrum.

To compute the bias and variance of F(w) treated as a statistical estimator of F(w), it is nec-
essary to make further assumptions about n(t). Before doing that, however, it is worth noting that
up to now n(t) has been any additive component that we desire to remove by filtering. If we take

00

f(t)= f P(w)e- iw tdw/27r,

N
E Zmpjf(t * tm), (10)

m=1

where pf(t) is the inverse Fourier transform of Pf(w), then we have filtered x(t). Indeed, by setting

N
f(tn )= E zmpf (t,- tm) n =1, .,N , (11)

m=1

and then usingthese values as noiseless data in Eq. (5) (with F0 (w) = 0, P(w) = Pf(w)), we reproduce
the estimate, F(w), of Eq. (9). The PDFT can in this way be used to introduce prior information
into linear filtering.

From now on it will be assumed that n(t) is one realization of a mean-zero weakly stationary
random process, with power spectral density function, Rn(w), and autocorrelation function, rn(t).

3



BYRNE AND FITZGERALD

With P(w) = Pf (w) + P, (w) and p(t) the inverse Fourier transform of P(w), let G be the
N X N matrix

G = [p(tn - Wmi] (12)

and let C be its inverse

C =Cnm] =G'-. (13)

Then we can write

N
F(w)= E Hm(w)x(tm) (14)

m=1

with

M
Hm (w)= Pf (w) E Cn m eiw t m, m1,...,N. (15)

n=1

It will be convenient to define, for any vector v = (v1 , ..., VN),

M
T(v,w) E Hm(W)vm* (16)

m=1

The expected value of F(w) is then

E(F(w))= T(f,w), (17)

for

f = (AYl, *--, I MN))X

so that the bias is

F(w)- E(F(w))= F(w)- T(f,w). (18)

Note that T(f, w) is the estimate of F(w) that would be obtained if the data vector were the noise-
less vector f. One source of bias is obviously traceable to deficiencies in the prior information even
in the noiseless case (the quadrature problem). Another source of bias stems from the decision to
design the estimator F(w) to operate in a noisy context and to use a prior estimate of the signal-
to-noise ratio of roughly Pf (w)IPn (w). The bias in Eq. (18) depends solely on what would happen
if the noise mysteriously vanished. We purposely introduce bias so that the variance can be reduced.

The variance of F(w) is given by

N N
var [F(w)] = E E Hm(w) Hn(W)P(ti - tn) (19)

m=1 n=1
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or

var [F(w)] = f IT(e(0),w)I 2 Rn(O)dI/27r, (20)

where e(O) = (exp (-it 1O), ..., exp(-itNO)). Note that T(e(O),w) is the value of the estimator F(w)
based on a data vector corresponding to samples of a pure sinusoid at frequency 0. To the extent
that Pf (w) effectively describes F(w), it is to be expected that most of the e(0) data will be attrib-
uted to noise, especially if Rn (0) is large and this is reflected in Pn (0). The spillover of noise at 0
into signal estimated energy at w should be small.

Next we consider the special case of sinusoids in noise.

SINUSOIDS IN NOISE

Let the information-bearing component of the received signal consist of K sinusoids

K

f(t) = E bkeiwk t , (21)
k=1

and, as before, let the given data be x(tn), n = 1, ..., N, where x(t) = f (t) +. n(t). The problem posed
is to estimate the number of sinusoids present, K, their frequencies, w1 , ... , WK, and their complex
amplitudes, bl, ..., bK-

No single weighting function is suitable for determining both the locations, Wk, and the ampli-
tudes, bk, of the sinusoids. Before the number and location of the sinusoids are known, Pf (w)
should be chosen to be flat, corresponding to our knowledge that almost all of F(w) is zero. The
estimate, F(w), thus obtained then provides information about where spectral peaks are not to be
found. Where peaks are located we can expect, using this flat Pf(w), to see only moderate indica-
tions in F(w), because of the algebraic limitations of the estimating function (9). After a good
estimate of the peak locations has been obtained, that information can be incorporated in the
estimator by choosing a new weight, Pf(w), which is larger in the neighborhood of likely sinusoidal
peaks. In the limiting case, when the values of wk are known exactly, a weighting function contain-
ing delta functions can be used to estimate the complex amplitudes, bk.

To consider this limiting case in more detail, suppose the sinusoid frequencies, w1 . Wk,
have been determined and Pf(w) has been set equal to

K

f (w) =27r E S(W Wk), (22)
k=1

so that

K
Pf(t) = E e-iwkt (23)

k=1
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The noise component is associated with a density Pn (w), whose inverse transform, Pn (t), we write as

Pn(t) = agn(t) ,

where

c =oPn(O) > O .

The matrix G in Eq. (12) becomes

G= [pf(tj- tm)+ Pn(t- tm)]

= [Pf(tj - tM)] + [gn(ti- tm)] -

Letting J be the N X K matrixJ= [exp (-iwktm)] we have, for Gn [gn(t - tm)]

G = JJ* + oGn

Using Eq. (22) in Eq. (9) we can write F(w) as

F(w) = 2wr E( zmeiwktm) 6(w -W)
k=1 m=1

and, thus, from Eq. (21) the estimate for bk is given by

N
bk = E zmeiwktm,

m=1

(24)

(25)

(26)

where

and where

Letting 6T = (b1, .. , bK), we obtain

zT = (Z1, ZN) = XTG-1N ,

XT = (X(tl ), ...,I X(tN)) -

b =J*z,
and

b J*G-1x

J*(JJ* + cx Gn) ix

=J*(G- lJJ* + OIG- 1Gn 1x,

where I is the identity matrix. A simple calculation shows that

J*(G1 JJ* + c)-1 = (cI + J*G- lJ)-fJ*

6
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and so we obtain,

b= (aI+J*Gl J)flJ*G-lx (31) ,,

It follows that as oc converges to zero, our estimating vector b converges to

b =(J*GnlJ)-lJ*G- x, (32)

which is easily recognized as the best (minimum variance) linear unbiased estimate (BLUE) of the
coefficients bl, ..., bK. By taking cc to zero, we gradually eliminate the noise component of the
prior P(w). As we saw earlier, this noise component is the source of bias, and so, in the limit when
- goes to zero we obtain an unbiased estimate. The estimate in Eq. (28) is biased to account for the
assumed presence of a noise component at a level of cx relative to the signal energy level described
by Pf (w). If the prior assessment of SNR (signal-to-noise ratio) is accurate, it is to be expected that
Eq. (28) will provide a better estimate than the BLUE.

The inversion of the matrix G in Eq. (24) is simplified by observing that JJ* is a sum of outer
products (column matrix times row matrix). An efficient scheme based on the identity

(A +xxT)-l =A-1 - (A lx)(xTA )
1 + XTAX

for column vector x, has been used successfully in simulations we have run.

SUMMARY

We have described methods for the linear reconstruction of Fourier transforms from noise-
less data and have extended them to the case of noisy samples. Bias and variance of these estima-
tors in the presence of weakly stationary random noise were calculated and the special case of
sinusoids in noise was considered. We found it useful to view this latter problem as one of fre-
quency estimation followed by amplitude estimation. The resulting biased amplitude estimates were
compared to their limiting unbiased values, which were shown to correspond to the BLUE.
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